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Dynamic simulation of plate heat exchangers
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Abstract—Previous models published in the literature are concerned with obtaining the steady state
performance of plate heat exchangers using numerical solution of the differential equations describing the
heat transfer process. The new numerical model, namely the ‘cinematic’ model developed by the authors
has been used to simulate the dynamic behaviour of countercurrent systems such as fluidized beds
(C. Lakshmanan and O. E. Potter, Ind. Engng Chem. Res. 26, 292-296 (1987)). This work reports the
application of the ‘cinematic’ model to simulate the dynamic performance of plate heat exchangers. It is
shown that the ‘cinematic’ model requires a very minimum amount of computations in accurately simulating
the dynamics of plate heat exchangers. Also, it computes the dynamic and steady state profiles in one
sweep, thus offering an easy and accurate approach to the design problems considered by others. It is also
shown that representing a plate heat exchanger with an even number of channels by an equivalent true
countercurrent system does not result in any significant errors as far as the steady state outlet temperatures
are concerned.
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INTRODUCTION

PLATE HEAT exchangers are commonly used in process
industries for a variety of applications. A plate heat
exchanger consists of a number of parallel flow chan-
nels formed by metal plates which are separated by
gasket material around the perimeter of each plate.
Nozzles for the flow of fluids extend through the
frames to the plate packages. Heat is transferred
through these plates from one fluid to the other (Fig.
1). A number of mathematical models of plate heat
exchangers have appeared in the literature. These have
been presented to solve both the design and per-
formance problems. Watson et al. {1] and Jackson
and Troupe [2] have used numerical integration tech-
niques such as the classical Runge-Kutta methods.
Buonopane et al. [3] have used the concept of dimen-
sional analysis. The heat transfer process taking place
in plate heat exchangers can be described by a system
of differential equations. A thorough analysis of these
differential equations is given by Wolf [4]. The ana-
lytical solution of this system of differential equations
involves an expansion in terms of eigenvalues and
eigenvectors characteristic of the system. The prop-
erties of the general mathematical model are published
by Zaleski [5]. He has discussed the application of
the methods to multiple channel exchangers without
channel interconnections and to two fluid plate heat
exchangers in which each of the fluids flows in every
second channel. Marano and Jechura [6] have com-
mented that Wolf [4] has not applied the technique
to a plate heat exchanger and Zaleski [5] has only

considered relatively simple problems. Marano and
Jechura [6] have presented a method suitable for digi-
tal computers to simulate the performance of plate
heat exchangers. Their method does not require initial
guesses for any of the outlet temperatures from the
exchanger. The system of ordinary differential equa-
tions is expressed in matrix form, and their solution
is expanded in terms of the eigenvalues and eigen-
vectors of the matrix.
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FiG. 1. Plate heat exchanger.
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NOMENCLATURE

A heat transfer area per plate [m?] T temperature, after

A (8 x 8) tridiagonal matrix with transformation, of fluids in
real elements defined in text, channels
equations (2) and (3) T* (8 x 1) column vector of

Cpe heat capacities of the fluids transformed temperatures
kg 'K T, initial temperature [°C]

CCTAOUT steady state outlet temperature of T (8 x 1) column vector of
fluid T4 for an equivalent true transformed initial
countercurrent system [°C] temperatures

CCTPOUT steady state outlet temperature of TAIN inlet temperature of fluid T4 [°C)
fluid TP for an equivalent true TAINI inlet temperature of fluid TA4!
countercurrent system [°C} [°C}

ERRA percentage error in the outlet TAIN2 inlet temperature of fluid 742
temperature of fluid T4 °C]

ERRP percentage error in the outlet TAOUT outlet temperature of fluid 74
temperature of fluid TP °C]

H eigenvector matrix TAOUT! outlet temperature of fluid T4/
corresponding to matrix A [°C]

H-! inverse of the eigenvector matrix TAOUT2 outlet temperature of fluid T42
H [

N number of cells TPIN inlet temperature of fluid TP [°C]

NC number of channels in the TPOUT outlet temperature of fluid TP
exchangers [°C}

NTU, number of transfer units in kth U overall heat transfer coefficient
channel, UA/W,.C,, Wm™ 2K

t time (s] w mass flow rate of fluid in channel

At (1/N)th of the residence time of k [kgs™').
the fast moving fluid [s]

T, temperature of fluid in channelj  Greek symbols
of a cell [°C] a; UAIW, . Cpti

T (8 x 1) column vector of T residence time of fluid in channel
temperatures k [s].

It can be easily noticed that the problems considered
by these authors are steady state performance analyses
of plate heat exchangers. Khan et al. {7] have per-
formed a frequency response study of a counter-
current plate heat exchanger. They have also men-
tioned the paucity of studies concerning the dynamics
of countercurrent plate heat exchangers. The dynamic
analysis of this class of heat exchangers will involve
solution of a large system of ordinary differential
equations. In some situations this system can have
split boundary conditions. Difficulties involved in the
numerical solution of problems of this class have been
discussed in detail by Lakshmanan and Potter [8]. To
overcome these problems, they have developed a
new numerical model, namely the ‘cinematic’ model.
This model has been shown to be fast in accurately
simulating the dynamic performance of a variety of
countercurrent systems in the time domain. It is there-
fore the objective of this paper to demonstrate the
capabilities of the ‘cinematic’ model in simulating the
dynamic behaviour of plate heat exchangers.

APPLICATION OF THE ‘CINEMATIC’ MODEL

In the following sections of this paper the term plate
refers to the partition between the two fluid streams
through which heat is transferred from the hot fluid
to the cold fluid. Marano and Jechura [6] have con-
sidered four types of plate heat exchangers. These are:

(1) seven plate, two-fluid, looped-flow heat ex-
changer (configuration A in this work) (Fig. 2);

(2) five plate, two-fluid, series-flow heat exchanger
(Fig. 3);

(3) five plate, two-fluid, complex-flow heat ex-
changer (Fig. 4);

(4) seven plate, three-fluid, looped-flow heat ex-
changer (configuration B in this work) (Fig. 5).

In the present analysis only two of these four con-
figurations are chosen and they are the seven plate,
two-fluid, looped-flow exchanger and the seven plate,
three-fluid, looped-flow exchanger. They are chosen
to iliustrate the application of the ‘cinematic’ model
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FIG. 2. Seven plate, looped-flow exchanger (configuration A).
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FiG. 3. Five plate, complex-flow exchanger.
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FiG. 4. Five plate, series-flow exchanger.

to problems with different levels of complexity. How- (1) Each fluid is ideally mixed in a direction normal
ever, it may be noted that the numerical simulation of  to flow.
different configurations of plate heat exchangers can (2) Plug flow is assumed due to the very high tur-
be performed in an analogous manner. bulence in the channels.

The following assumptions will be made in applying (3) Heat conduction in the direction of flow is neg-

the ‘cinematic’ model to plate heat exchangers. ligible.
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F1G. 5. Seven plate, three-fluid, looped-flow exchanger (configuration B).

(4) Heat is transferred only in the direction normal
to the axis of a channel.

(5) An average value is used for the overall heat
transfer coefficient.

(6) The effect of temperature on densities and heat
capacities of the fluids is neglected.

(7) As the plates are very thin, it is reasonable to
assume that they have negligible heat capacitance.

(8) No phase change occurs within the exchanger.

With these assumptions, the equations of the ‘cine-
matic” model will be given next. The flow path between
the plates is called a channel. For the seven plate
exchanger, there are eight channels! The heat ex-

changer is divided into N cells. Each cell consists of"

eight compartments in which fluids flow counter-
current to each other. Each fluid is allowed to remain
in every cell for (1/N)th of its residence time in a
channel. Exchange is allowed in every cell for a differ-
ential contact time (A¢), which is equal to (1/N)th of
the residence time of the fast moving stream. After
the exchange, the fluid elements are shifted to the next
cell in the appropriate direction of flow, based on the
ratio of their residence times. Since each compartment
is assumed to be well mixed, the exchange process can
be written as

dT,
‘d—;"= —a(T,—T)) (1a)
d7,
d—tf =T =T)=a(T;=Ty), j=2-7 (1b)
dT,
4 =~ =Ty). (1)

The coefficients o, = UA/W,Cp1, for k = 1-8. For
the purpose of demonstration of the applicability of
the ‘cinematic’ model, it will be assumed that the heat
capacities of the fluid and their mass flow rates in
every channel are the same. This will mean that

oy =0y = &g = &7 and o, = @, = &5 = %4. Therefore,
equations (la)-(1lc) can be written as

dT

T AT. 2)
The elements of the column vector T(8 x 1) consist of
the temperatures of the fluids in eight compartments.
The matrix A is an (8 x 8) real, tridiagonal matrix.
The elements of A are given below.

The main diagonal elements are —x,, —24a,, —24a,,
—20,, —2ay, —2a,, —2a, and —a,. The upper diag-
onal elements are a,, o,, &, o5, &y, ¥, and a,. The
lower diagonal elements are a,, %, 2, %;, %, %, and
a,. When W,C, 1, is not equal to W.C,,t,, the tem-
peratures T,, k = 1-8 can be represented by a trans-
formed set of temperatures T# = /(W,C,,7))T, for
k=1, 3, 5 and 7. For other values of k%,
Tt= /(W,C,t)T,. With these definitions, the
model equations are given by the following set of
differential equations:

dT* .

7a AT*. 3)
The matrix A is again an (8 x8) real, tridiagonal
matrix. Also, it is now a symmetric matrix. This trans-
formation of temperatures is necessary to produce a
symmetric tridiagonal matrix A for the case
Wi Cpoity # W3C,01,. When W Gty = W,C,p15 the
matrix A takes the symmetric tridiagonal form
even without the transformation. The off-diagonal
elements are equal to § where f = \/(x,2,). The main
diagonal elements are —a,, ~2x,, —22,, —2a,, —22,,
~20y, —2, and —a,. Note that 2, = NTU,/t, and
oy = NTU,ft,.

The solution of the system of differential equations
(2) is given as exp(AT,) and that of equation (3)
by exp (AT¥) where T, and T§ are column vectors
containing the initial values of the temperatures of the
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two fluids in compartments 1-8 in a general cell. Since
it has been shown that the tridiagonal matrix A can
be transformed into a symmetric tridiagonal matrix
by transforming the temperatures of the fluids, in the
following section of this paper only the case of a
symmetric tridiagonal system will be considered. To
obtain the exponent of a real symmetric tridiagonal
matrix, the eigenvalues and the associated eigen-
vectors of the matrix are to be calculated. Subroutine
EIGRF of the IMSL package [9] is used to obtain
them. Once the eigenvalues and eigenvectors are made
available, the exponent of the matrix is obtained using
the equality, exp (At) = Hexp (AI)H™' where Al is
the tridiagonal matrix of eigenvalues and H the eigen-
vector. H™! is the inverse of the eigenvector matrix.
For a real symmetric tridiagonal matrix, the inverse
of the eigenvector matrix is the transpose of the eigen-
vector matrix. Using this property, exp (At) at ¢ = At
can be calculated and the result of the exchange during
this time interval is calculated. The procedures
described so far provide the required equations to set
up a computer program which will then simulate the
dynamic response of a plate heat exchanger.

ALGORITHM

Step 1. Input length of a channel in m, velocity of
the fluids, in m s~ ', overall heat transfer coefficient in
W m~2 K-, number of channels in the exchanger,
heat transfer area per plate in m% heat capacities of
the fluids in J kg~' K~! and the mass flow rates of
the fluids in channels in kg s~".

Step 2. Input number of cells.

Step 3. Initialize the temperatures of the fluids in
all compartments of every cell.

Step 4. Hold each fluid in its compartment for a
duration of time At, equal to (1/N)th of the residence
time of the fast moving stream in a channel.

Step 5. During this period, heat exchange is carried
out between the fluids in adjacent compartments. As
a result of this exchange the temperatures change and
the new values are obtained as described earlier.

Step 6. The fluid elements are moved in the appro-
priate direction of flow and new quanta are introduced
to fill the compartments of cells 1 and N at either end.
The temperatures are reinitialized and the calculations
repeated from step 5 until steady state is established.
The outlet temperatures are also obtained.

Two start-up problems are solved using the ‘cine-
matic’ model. The first problem considers a plate ex-
changer of configuration A and the second one an ex-
changer of configuration B. The following data is
applicable to both systems.

DATA

Length of a channel=1 m; depth of a
channel = 0.005 m ; plate width = 0.4 m; velocities of
the fluids are equal to 2 m s~} ; overall heat transfer
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coefficient = S000 W m~2 K~ '; heat capacities of the
fluids are equal to 4187 J kg~' K~'; heat transfer
area per plate = 0.5 m?; mass flow rate of fluids per
channel = 4 kg s~'; densities of fluids are equal to
1000 kg m™~3,

PROBLEM 1 (SEE FIG. 2)

Prior to the disturbance the temperatures of the
fluids in all compartments are equal to 10°C. At ¢ = 0,
the inlet temperatures of fluids T4 and TP are
increased to 20 and 80°C, respectively. The dynamic
simulations are performed from this time until the
steady state is established.

The averaged outlet temperatures of fluids
(TAOUT and TPOUT) at steady state are shown as
the number of cells are increased in Figs. 6 and 7. It
can be seen that only a few cells are required to simu-
late the dynamics correctly. Additional calculations
are performed with the ‘cinematic’ approach varying
the number of channels in the exchanger considered
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Table 1. Deviation from the performance of a true countercurrent heat exchanger
NC NTU TPOUT TAOUT CCTPOUT CCTr40UT % ERRP % ERR
2 0.1493 72.207 27.793 72.2070 27.7930 0.000 0.000
4 0.2239 69.242 30.758 69.0233 30.9767 —-0.317 0.706
6 0.2488 68.230 31770 68.0467 31.9533 -0.269 0.574
8 0.2612 67.724 32.276 67.5728 324272 -0.224 0.466
10 0.2687 67.420 32.580 67.2929 32.7071 —-0.188 0.389
12 0.2737 67.218 32.782 67.1082 32.8918 —-0.164 0.334
14 02772 67.073 32.927 66.9771 33.0229 —0.143 0.291
16 02799 66.965 33.035 66.8792 33.1208 -0.128 0.259
8 0.2820 66.880 33.120 66.8034 33.1966 —0.115 0.231
20 0.2836 66.813 33187 66.7430 33.2570 —0.105 0.211

from 2 to 20. The steady state outlet temperatures of
the two fluids were compared with the outlet tem-
peratures of an equivalent true countercurrent heat
exchanger and the results are shown in Table 1.

For the equivalent true countercurrent system

U4 2NC-1)
W,C,,  NC

The steady state outlet temperatures are calculated
with this value of NTU. The ‘per cent’ errors are
calculated as % deviation of the outlet temperatures
of fluids (TAOUT and TPOUT) from the cor-
responding countercurrent values. From these results
it can be seen that a plate heat exchanger with an
even number of channels in general does not perform
significantly differently from that of an equivalent true
countercurrent exchanger. This suggests that quick
design calculations can be performed for a plate heat
exchanger using the equivalent true countercurrent
system as a basis.

NTU =

PROBLEM 2 (SEE FIG. 5)

Before the starting-up of the heat exchanger, tem-
peratures of the fluids in all channels equal 10°C. At

470 Y T v g T T + Y

469 + s TAOUT1 E
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Fic. 8. Effect of number of cells (configuration B).

t = 0%, the inlet temperatures of fluids TAIN1, TAIN2
and TPIN are increased to 40, 20 and 80°C, respec-
tively. The computations are performed from this time
until steady state is established. The effect of the num-
ber of cells on the averaged outlet temperatures of the
fluids is shown in Figs. 8-10. Again. it can be seen
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CAUTION : TEMPERATURE SCALES ARE NOT THE SAME.
At t20%s

At t2017s At 103578 At t220"s
&0 &2 Py
l— — LLLL
[/} D M
o o ) Fr
0 o as
S0, &0 ‘e 573

™
™

Q
QO
a

r
1 P i P

«
o
L)

20

oU

o
O
3o
&

—

85
as

30 20 30

0 0 20
%0 80 25 29
o5 - o 05 70
At t=0s At te01"s At $20-57s At t=207s
COLUMN 1 : JUST AFTER THE FIRST QUANTUMS ARE FILLED

COLUMN 2 : AT THE END OF 01 s
COLUMN 3 : AT THE END OF 0-S s (ONE RESIDENCE TIME)
COLUMN & : AT THE END OF 20 s {FINAL STEADY STATE}

FiG. 11. Dynamic temperature profiles (configuration B).

that a small number of cells is required to simulate the
dynamic performance of this type of heat exchanger
accurately. Figure 11 shows the dynamic temperature
profiles of the fluids from the start-up time. There are
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four columns of graphs in this figure. Each column
represents the temperature profiles at a particular
instant, shown in Fig. 11. Every column contains eight
sub-figures representing the eight channels of the
exchanger. It must be noted that the temperature
scales are not the same in Fig. 11. The averaged values
of the outlet temperatures of fluids (TPOUT,
TAOUTI and TA0OUT2) are plotted against dimen-
sionless time (time/residence time in a channel) in Fig.
12. This indicates that the exchanger is close to steady
state operating conditions at a dimensionless time
equal to 2.

DISCUSSION AND CONCLUSION

The ‘cinematic’ model has been applied to evaluate
the dynamic performance of two types of plate heat
exchangers. The procedures indicated here can be
applied to other types of plate heat exchangers. Inte-
gral ratios of residence times are chosen for easier
demonstration of the ability of the model. However,
for other values procedures similar to the one indi-
cated can be adopted. Also, varying heat transfer
coefficients and any other non-linearity can be
adopted easily while similar attempts using methods
such as Laplace transforms may prove to be very
difficult computational problems. It has also been
shown that the ‘cinematic’ model solves the design
problem which requires just the steady state tem-
perature profiles and the performance problem which
requires the dynamic behaviour of the exchanger. If
the computational efforts involved in implementing
this technique on a digital computer are compared
to the previously reported techniques, two important
points can be summarized. The first one is that the
‘cinematic’ model requires the least amount of cal-
culations to provide accurate and fast results due to
the simple algorithm. Secondly, the ‘cinematic’ model
provides not only the steady state temperature profiles
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FI1G. 12. Approach to steady state (configuration B).
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but also the dynamic temperature profiles, thus solv-
ing the design and the performance problems in one
sweep. Further applications of this model are in pro-

gress.
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SIMULATION DYNAMIQUE DES ECHANGEURS THERMIQUES A PLAQUES

Résumé—Des modéles précédemment publiés concernent la performance de régime permanent des échan-
geurs thermiques & plaques en utilisant la solution numérique des équations différentielles qui décrivent
le transfert de chaleur. Le nouveau modéle numérique, dit modéle “cinématique”, développé par les auteurs
a été utilisé pour simuler le comportement variable des systémes a contre-courant tels que les lits fluidisés
(C. Lakshmanan et O. E. Potter, Ind. Engng Chem. Res. 26, 292-296 (1987)). On traite ici de I'application
de ce modéle & la simulation de la performance dynamique des échangeurs thermiques a plaques. On
montre que le modéle “cinématique” nécessite un trés faible temps de calcul en donnant une simulation
precise. Il calcule aussi les profils variables et stationnaires, offrant ainsi une approche aisée et précise pour
les probiémes de conception considérés par d’autres modéles. Ii montre que représenter un échangeur i
plaques avec un certain nombre de canaux par un systéme & contre-courant équivalent, ne conduit pas d
des erreurs significatives quant on considére les températures de sortie en régime permanent.

DYNAMISCHE SIMULATION VON PLATTENWARMETAUSCHERN

Zusammenfassung—Modelle, die bisher in der Literatur beschricben wurden, sind in der Lage, das
stationiire Verhalten von Plattenwirmetauschern zu berechnen. Dabei werden die Differentialgleichungen,
welche, die Wirmeiibertragung beschreiben, numerisch geldst. Das neue, sogenannte “kinematische”
Modell, das von den Autoren entwickelt wurde, ist in der Lage, das dynamische Verhalten von Gegen-
stromsystemen, wie z. B. Wirbelbetten, zu simulieren (C. Lakshmanan and O. E. Potter, Ind. Engng Chem.
Res. 26, 292-296 (1987)). In der vorliegenden Arbeit wird die Anwendung des kinematischen Modells bei
der Simulation des dynamischen Verhaltens von Plattenwarmetauschern gezeigt. Das kinematische Modell
benétigt auBerordentlich wenig Berechnungen, um die Dynamik von Plattenwirmetauschern exakt zu
beschreiben. Die dynamischen und stationdren Profile werden in einem Durchgang berechnet; dadurch
steht fiir Auslegungsprobleme ein einfaches und genaues Verfahren zur Verfiigung. Es zeigt sich auch, daB
bei einem Plattenwirmeiibertrager mit einer geraden Zahl von Kanilen keine spiirbaren Fehler bei der
Berechnung der stationdren Austrittstemperaturen entstehen.

JAAHAMHYECKOE MOJEJIHPOBAHHE TUVIACTHHYATBIX TEIVIOOBMEHHHUKOB

Amnoramms—Panee OpeMUIOXEHHBIC B JHTCPATYPE MOMNCNH NPEAHAIHAYCHM [UIN ONPCAC/ICHHR CTalHO-

HAPHOTO pexHMa paboTm

ONACTHHYATMX TEWIOOSMCHHENKOB HA OCHOBE YHC/ICHHOTO pemnenns audde-

PCHOMATLHLIX YPaBHCHMil, ONHCMBRIOUIMX NpPOLECC TeronepeHoca. Hosan umciemnas mozens, a
HMEHNO, paspaloTanHas asTopaMu AannOR paboTa Mozesns “CHEEMATHK”, HCIIONL3YETCK 1A MOMCIH-
POBAHESA JHHAMMWECKOTO NOBEJCHHS TAKMX IPOTHBOTOYHMX CHCTCM, KAK NCCBJOOXHMCHHLC CJIOH.
PaccMaTpHBACTCR MPHMCHCHES MONCIE “CHECMATHK” /IS MONCANPOBAHHA ITHHAMHYCCKOIO PeXHMA
MIACTHHYATRX Tewioobmennnxos. [10xa3aHo, ¥TO A/IA TOYHOTO MOASIEPOBARAN IHHAMAKH [LIACTHHYA-
THX TeNN006MEHHMKOB C HCIOMBIOBAHNEM NaHHON MoaeH Tpefyercs MEHNMALHOC KOJHYECTBO pac-
gseroB. Moaemy “CaHeMaTHX” NO3BOJARCT TAKAKE OAHOBPEMCHHO DACCYHTHIBATL JNHAMHYECKHC H
CTaMOHaPHBIE NPOQHNE. ITHM MCTOZOM MOXHO GoJiee NPOCTO B TOYHO PEIHTS 3ANATH, BCQICAOBAH-
Hbic ZpyrEMH asTopami. JIoxasaHo, 1TO NPEACTaB/ICHHE MUIACTHHYATOrO TCMIOOOMEHHAXE C YCTHBLIM
KOMIHYCCTBOM KaHAJOB JXBHBAJICHTHOR NPOTHBOTOUHOHN cucTeMOll HE NPHBOANT K 3HAYHTCIBHHIM MOT-
PEIIHOCTAM ONPERCIICHNA CTANRORAPHLIX TEMNEPATYDP Ha BHIXOJE.



