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Abstract-Previous models published in the literature are concerned with obtaining the steady state 
performance of plate heat exchangers using numerical solution of the differential quations describing the 
heat transfer process. The new numerical model, namely the ‘cinematic’ model developed by the authors 
has been used to simulate the dynamic behaviour of countercurrent systems such as fluidized beds 
(C. Lakshmanan and 0. E. Potter, fnd. Ettgng Chem. Res. 26, 292-296 (1987)). This work reports the 
application of the ‘cinematic’ model to simulate the dynamic performance of plate heat exchangers. It is 
shown that the ‘cinematic’ model requires a very minimum amount of computations in accurately simulating 
the dynamics of plate heat exchangers. Also, it computes the dynamic and steady state profiles in one 
sweep, thus offering an easy and accurate approach to the design problems considered by others. It is also 
shown that representing a plate heat exchanger with an even number of channels by an equivalent true 
countercurrent system does not result in any significant errors as far as the steady state outlet temperatures 

are concerned. 

INTRODUCTION 

PLATE HEAT exchangers are commonly used in process 
industries for a variety of applications. A plate heat 
exchanger consists of a number of parallel flow chan- 
nels formed by metal plates which are separated by 
gasket material around the perimeter of each plate. 
Nozzles for the flow of fluids extend through the 
frames to the plate packages. Heat is transferred 
through these plates from one fluid to the other (Fig. 
1). A number of mathematical models of plate heat 
exchangers have appeared in the literature. These have 
been presented to solve both the design and per- 
formance problems. Watson et al. [l] and Jackson 
and Troupe [2] have used numerical integration tech- 
niques such as the classical Rung+Kutta methods. 
Buonopane et al. [3] have used the concept of dimen- 
sional analysis. The heat transfer process taking place 
in plate heat exchangers can be described by a system 
of differential equations. A thorough analysis of these 
differential equations is given by Wolf [4]. The ana- 
lytical solution of this system of differential equations 
involves an expansion in terms of eigenvalues and 
eigenvectors characteristic of the system. The prop- 
erties of the general mathematical model are published 
by Zaleski [Sl. He has discussed the application of 
the methods to multiple channel exchangers without 
channel interconnections and to two fluid plate heat 
exchangers in which each of the Buids flows in every 
second channel. Marano and Jechura [6] have com- 
mented that Wolf [4] has not applied the technique 
to a plate heat exchanger and Zaleski [Sj has only 

considered relatively simple problems. Marano and 
Jechura [6] have presented a method suitable for digi- 
tal computers to simulate the performance of plate 
heat exchangers. Their method does not require initial 
guesses for any of the outlet temperatures from the 
exchanger. The system of ordinary differential equa- 
tions is expressed in matrix form, and their solution 
is expanded in terms of the eigenvalues and eigen- 
vectors of the matrix. 

FIG. 1. Plate heat exchanger. 
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NOMENCLATURE 

A heat transfer area per plate [m*] T: temperature, after 
A (8 x 8) tridiagonal matrix with transformation, of fluids in 

real elements defined in text, channels 
equations (2) and (3) T* (8 x 1) column vector of 

C, heat capacities of the fluids transformed temperatures 
[J kg-’ K- ‘1 TO initial temperature [“Cl 

CCTAOUT steady state outlet temperature of TZ (8 x 1) column vector of 
fluid TA for an equivalent true transformed initial 
countercurrent system [“Cl temperatures 

CCTPOUT steady state outlet temperature of TAIN inlet temperature of fluid TA [‘Cl 
fluid TP for an equivalent true TAINI inlet temperature of fluid TAl 
countercurrent system [“Cl [“Cl 

ERRA percentage error in the outlet TAIN2 inlet temperature of fluid TA2 
temperature of fluid TA [“Cl 

ERRP percentage error in the outlet TAOUT outlet temperature of fluid TA 
temperature of fluid TP [“Cl 

H eigenvector matrix TAO UT1 outlet temperature of fluid TAI 
corresponding to matrix A [“cl 

H-1 inverse of the eigenvector matrix TAO UT2 outlet temperature of fluid TA2 
H [“Cl 

N number of cells TPIN inlet temperature of fluid TP [“Cl 
NC number of channels in the TPOUT outlet temperature of fluid TP 

exchangers [“Cl 
NTU, number of transfer units in kth U overall heat transfer coefficient 

channel, UAl W,C,, [wm-'K- ‘1 
t time [s] W mass flow rate of fluid in channel 
At (l/N)th of the residence time of k [kgs- ‘1. 

the fast moving l’luid [s] 

2-l temperature of fluid in channeli Greek symbols 
of a cell [“c] ai f=JAIW&rk 

T (8 x 1) column vector of =k residence time of fluid in channel 
temperatures k bl. 

It can be easily noticed that the problems considered 
by these authors are steady state performance analyses 
of plate heat exchangers. Khan et al. [7l have per- 
formed a frequency response study of a counter- 
current plate heat exchanger. They have also men- 
tioned the paucity of studies concerning the dynamics 
of countercurrent plate heat exchangers. The dynamic 
analysis of this class of heat exchangers will involve 
solution of a large system of ordinary differential 
equations. In some situations this system can have 
split boundary conditions. Difficulties involved in the 
numerical solution of problems of this class have been 
discussed in detail by Lakshmanan and Potter [8]. To 
overcome these problems, they have developed a 
new numerical model, namely the ‘cinematic’ model. 
This model has been shown to be fast in accurately 
simulating the dynamic performance of a variety of 
countercurrent systems in the time domain. It is there- 
fore the objective of this paper to demonstrate the 
capabilities of the ‘cinematic’ model in simulating the 
dynamic behaviour of plate heat exchangers. 

APPLICATION OF THE ‘CINEMATIC’ MODEL 

In the following sections of this paper the term plate 
refers to the partition between the two fluid streams 
through which heat is transferred from the hot fluid 
to the cold fluid. Marano and Jechura [6] have con- 
sidered four types of plate heat exchangers. These are : 

(1) seven plate, two-fluid, looped-flow heat ex- 
changer (configuration A in this work) (Fig. 2) ; 

(2) five plate, two-fluid, series-flow heat exchanger 
(Fig. 3) ; 

(3) five plate, two-fluid, complex-flow heat ex- 
changer (Fig. 4) ; 

(4) seven plate, three-fluid, looped-flow heat ex- 
changer (configuration B in this work) (Fig. 5). 

In the present analysis only two of these four con- 
figurations are chosen and they are the seven plate, 
two-fluid, looped-flow exchanger and the seven plate, 
three-fluid, looped-flow exchanger. They are chosen 
to illustrate the application of the ‘cinematic’ model 
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FIG. 2. Seven plate, looped-flow exchanger (configuration A). 
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FIG. 3. Five plate, complex-flow exchanger. 
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FIG. 4. Five plate, series-flow exchanger. 
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to problems with different levels of complexity. How- (1) Each fluid is ideally mixed in a direction normal 
ever, it may be noted that the numerical simulation of to flow. 
different configurations of plate heat exchangers can (2) Plug flow is assumed due to the very high tur- 
be performed in an analogous manner. bulence in the channels. 

The following assumptions will be made in applying (3) Heat conduction in the direction of flow is neg 
the ‘cinematic’ mode1 to plate heat exchangers. ligible. 
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FIG. 5. Seven plate, three-fluid, looped-flow exchanger (configuration B). 

(4) Heat is transferred only in the direction normal 
to the axis of a channel. 

(5) An average value is used for the overall heat 
transfer coefljcient. 

(6) The effect of temperature on densities and heat 
capacities of the fluids is neglected. 

(7) As the plates are very thin, it is reasonable to 
assume that they have negligible heat capacitance. 

(8) No phase change occurs within the exchanger. 

With these assumptions, the equations of the ‘cine- 
matic’ model wilf be given next, The flow path between 
the plates is calied a channel. For the seven plate 
exchanger, there are eight channeb: The heat ex- 
changer is divided into N cells. Each cell consists of. 
eight compartments in which fluids flow counter- 
current to each other. Each fluid is allowed to remain 
in every cell for (l/N)th of its residence time in a 
channel. Exchange is allowed in every cell for a differ- 
ential contact time (At), which is equal to (l/N)th of 
the residence time of the fast moving stream. After 
the exchange, the fluid elements are shifted to the next 
cell in the appropriate direction of flow, based on the 
ratio of their residence times. Since each compartment 
is assumed to be well mixed, the exchange process can 
be written as 

dT, 
-&-= --et@-, --T2) W 

dT,_ 

dt 
- a,(‘l;_.,-T,)-cl,(T’-T,,,), j- 2-7 (lb) 

dT, 
-z-= -UT,- T*). (lc) 

The coefficients or, = UA/WkCHtk for k = l-8. For 
the purpose of demonstration of the applicability of 
the ‘cinematic model, it will be assumed that the heat 
capacities of the fluid and their mass flow rates in 
every channel are the same. This will mean that 

OUT 

aI = a3 = Q) = cc7 and a2 = !z4 = x6 = zg. Therefore, 
equations (Ia)- can be written as 

dT 
z=AT. 

The elements of the column vector T(8 x 1) consist of 
the temperatures of the fluids in eight compartments. 
The matrix A is an (8 x 8) real, tridiagonal matrix. 
The elements of A are given below. 

The main diagonal elements are - I ,, - 2z2, -2x ,, 

-2a2, -2a,, -2112, - 21 1 and - 01~. The upper diag- 
onal elements are a,, a2, aI, a2, sf$, x2 and a,. The 
lower diagonal elements are a2, z,, x1, x,, a2, x, and 
a2. When W,C,,,r, is not equal to WzCp2t2, the tem- 
peratures T,, k = l-8 can be represented by a trans- 
formed set of temperatures T$ = ,/( W, C, ,r ,) Tk for 
k = 1, 3, 5 and 7. For other values of k, 
Tf = ,/( W2CP2r2)Tk. With these definitions, the 
model equations are given by the foIIo~ng set of 
differential equations : 

U‘ 

dt = AT*. 

The matrix A is again an (8 x 8) real, tridiagonal 
matrix. Also, it is now a symmetric matrix. This trans- 
formation of temperatures is necessary to produce a 
symmetric tridiagonal matrix A for the case 
W,C,,r, # W2CP2z2. When W,C,,r, = W2CP2r2 the 
matrix A takes the symmetric tridiagonal form 
even without the transformation. The off-diagonal 
elements are equal to /? where fi = J(x, zJ. The main 
diagonalelementsare -e,, -2a2, -2x,, -2a2, -2rx,, 
-2a2, -2x, and -a2. Note that a, = NTiJ&, and 
a2 = NTU,fr,. 

The solution of the system of differential equations 
(2) is given as exp(AT@) and that of equation (3) 
by exp(AT$) where To and TX are column vectors 
containing the initial values of the temperatures of the 
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two fluids in compartments l-8 in a general cell. Since 
it has been shown that the tridiapnal matrix A can 
be transformed into a symmetric tridiagonal matrix 
by transforming the temperatures of the fluids, in the 
following section of this paper only the case of a 
symmetric tridiagonal system will be considered. To 
obtain the exponent of a reti1 symmetric tridiagonal 
matrix, the eigenvalues and the associated eigen- 
vectors of the matrix are to be calculated. Subroutine 
EIGRF of the IMSL package [9] is used to obtain 
them. Once the eigenvalues and eigenvectors are made 
available, the exponent of the matrix is obtained using 
the equality, exp (At) = H exp (E.It)H- ’ where 11 is 
the tridiagonal matrix of eigenvalues and H the eigen- 
vector. H- ’ is the inverse of the eigenvector matrix. 
For a real symmetric tridiagonal matrix, the inverse 
of the eigenvector matrix is the transpose of the eigen- 
vector matrix. Using this property, exp (Ar) at I = Ar 
can be calculated and the result of the exchange during 
this time interval is calculated. The procedures 
described so far provide the required equations to set 
up a computer program which will then simulate the 
dynamic response of a plate heat exchanger. 

ALGORITHM 

Step 1. Input length of a channel in m, velocity of 
the fluids, in m s- ‘, overall heat transfer coefficient in 
W m-’ K- ‘, number of channels in the exchanger, 
heat transfer area per plate in m*, heat capacities of 
the fluids in J kg-’ K-’ and the mass flow rates of 
the fluids in channels in kg s- I. 

Step 2. Input number of cells. 
Step 3. Initialize the temperatures of the fluids in 

all compartments of every cell. 
Step 4. Hold each fluid in its compartment for a 

duration of time Ar, equal to (l/N)th of the residence 
time of the fast moving stream in a channel. 

Step 5. During this period, heat exchange is carried 
out between the fluids in adjacent compartments. As 
a result of this exchange the temperatures change and 
the new values are obtained as described earlier. 

Step 6. The fluid elements are moved in the appro- 
priate direction of flow and new quanta are introduced 
to fill the compartments of cells I and Nat either end. 
The temperatures are reinitialized and the calculations 
repeated from step 5 until steady state is established. 
The outlet temperatures are also obtained. 

Two start-up problems are solved using the ‘cine- 
matic’ model. The first problem considers a plate ex- 
changer of configuration A and the second one an ex- 
changer of configuration B. The following data is 
applicable to both systems. 

DATA 

Length of a channel = 1 m; depth of a 
channel = 0.005 m; plate width = 0.4 m; velocities of 
the fluids are equal to 2 m s- ’ ; overall heat transfer 

coefficient = 5000 W m- * K- ’ ; heat capacities of the 
fluids are equal to 4187 J kg-’ K- ’ ; heat transfer 
area per plate = 0.5 m* ; mass flow rate of fluids per 
channel = 4 kg s- ’ ; densities of fluids are equal to 
1000 kg m-l. 

PROBLEM 1 (SEE FIG. 2) 

Prior to the disturbance the temperatures of the 
tluids in all compartments are equal to 10°C. At t = 0, 
the inlet temperatures of fluids TA and TP are 
increased to 20 and 8O”C, respectively. The dynamic 
simulations are performed from this time until the 
steady state is established. 

The averaged outlet temperatures of fluids 
(TAOUT and TPOUT) at steady state are shown as 
the number of cells are increased in Figs. 6 and 7. It 
can be seen that only a few cells are required to simu- 
late the dynamics correctly. Additional calculations 
are performed with the ‘cinematic’ approach varying 
the number of channels in the exchanger considered 
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FIG. 6. Effect of number of cells (configuration A). 
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FIG. 7. EfTcct of number of cells (configuration A). 
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Table 1. Deviation from the performance of a true countercurrent heat exchanger 

NC NTU TPOUT TAOUT CCTPUUT CCTAOUT 0% ERRP %ERR 

2 
4 
6 
8 

t4 
14 
16 

0.1493 72.207 
0.2239 69.242 
0.2488 68.230 
0.2612 67.724 
0.2681 67.420 
0.2131 67.218 
0.2772 67.073 
0.2799 66.965 
0.2820 66.880 
0.2836 66.813 

27.793 
30.758 
31.770 
32.276 
32.580 
32.782 
32,927 
33.035 
33.120 
33.187 

72.2070 27.7930 0800 0.000 
69.0233 30.9767 -0.317 0.706 
68.0467 31.9533 -0.269 0.574 
67.5728 32.4272 -0.224 0.466 
67.2929 32.7071 -0.188 0.389 
67.1082 32.8918 -0.164 0.334 
66.9771 33.0229 -0.143 0.291 
66.8792 33.1208 -0.128 0.259 
66.8034 33.1966 -0.115 0.231 
66.7430 33.2570 -0.105 0.211 

from 2 to 20. The steady state outlet temperatures of 
the two fluids were compared with the outlet tem- 
peratures of an equivalent true countercurrent heat 
exchanger and the results are shown in Table 1. 

For the ~ui~~ent true counte~u~nt system 

UA 2(NC-1) 

NTU=w,c,, NC . 

The steady state outlet temperatures are calculated 
with this value of NTU. The ‘per cent’ errors are 
calculated as % deviation of the outlet temperatures 
of fluids (TAOUT and TPOUT) from the cor- 
responding co~~~u~ent values. From these results 
it can be seen that a plate heat exchanger with an 
even number of channels in general does not perform 
significantly differently from that of an equivalent true 
countercurrent exchanger. This suggests that quick 
design calculations can be performed for a plate heat 
exchanger using the equivalent true countercurrent 
system as a basis. 

PROBLEM 2 (SEE FIG. 6) 

Before the starting-up of the heat exchanger, tem- 
peratures of the fluids in all channels equal 10°C. At 

.*-+- 

+- TAOUT 1 

46.8: ’ * - * ’ 8 * * 1 
23LS578 9 70 

NUHBER OF CELLS IN] 

FIG. 8. Etkct of number of o&s (con~gu~tjon B). 

I = O+, the inlet temperaturesof fluids TAINI, TAIN2 
and TPIN are increased to 40, 20 and 8O”C, respec- 
tively. The computations are performed from this time 
until steady state is established. The effect of the num- 
ber of cells on the averaged outlet temperatures of the 
fluids is shown in Figs. &IO. Again. it can be seen 

/- 

I_~-I-I-x- 

I - TAOUTZ 

1 I I I . I ‘ t _ 
t23C5678910 

NUMBER OF CELLS (N) 

FIG. 9. Effect of number of cells (configuration B). 
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FIG. 10. Effect of number of ceils (con~~~don B). 
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FIG. 1 I. Dynamic temperature profiles (configuration B). 

that a small number of cells is required to simulate the 
dynamic performance of this type of heat exchanger 
accurately. Figure 11 shows the dynamic temperature 
profiles of the fluids from the start-up time. There are 

four columns of graphs in this figure. Each column 
represents the temperature profiles at a particular 
instant, shown in Fig. 11. Every column contains eight 
sub-figures representing the eight channels of the 
exchanger. It must be noted that the temperature 
scales are not the same in Fig. 11. The averaged values 
of the outlet temperatures of fluids (TPOCJT, 
TAOUTI and TAOUT2) are plotted against dimen- 
sionless time (time/residence time in a channel) in Fig. 
12. This indicates that the exchanger is close to steady 
state operating conditions at a dimensionless time 
equal to 2. 

DISCUSSION AND CONCLUSION 

The ‘cinematic’ model has been applied to evaluate 
the dynamic performance of two types of plate heat 
exchangers. The procedures indicated here can be 
applied to other types of plate heat exchangers. Inte- 
gral ratios of residence times are chosen for easier 
demonstration of the ability of the model. However, 
for other values procedures similar to the one indi- 
cated can be adopted. Also, varying heat transfer 
coefficients and any other non-linearity can be 
adopted easily while similar attempts using methods 
such as Laplace transforms may prove to be very 
difficult computational problems. It has also been 
shown that the ‘cinematic’ model solves the design 
problem which requires just the steady state tem- 
perature profiles and the performance problem which 
requires the dynamic behaviour of the exchanger. If 
the computational efforts involved in implementing 
this technique on a digital computer are compared 
to the previously reported techniques, two important 
points can be summarized. The first one is that the 
‘cinematic’ model requires the least amount of cal- 
culations to provide accurate and fast results due to 
the simple algorithm. Secondly, the ‘cinematic’ model 
provides not only the steady state temperature profiles 

0 
0 1 

CwENSlONL ESf TIWE IrIEIEIkLwC ri:, 
FIG. 12. Approach to steady state (configuration B). 
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but also the dynamic temperature profiles, thus solv- 4. 
ing the design and the perfomance problems in one 
sweep. Further applications of this model are in pro- 5 

gress. 
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SIMULATION DYNAMIQUE DES ECHANGEURS THERMIQUES A PLAQUES 

R&u&-Des mod&s pr&demment publieS concernem la performance de regime permanent des Chan- 
gems thermiques i plaques en utilisant la solution numtrique des equations dit&entielles qui decrivent 
Ie transfert de chaleur. Le nouveau modele numbrique, dit modele “cidmatique”, dbveloppC par la auteurs 
a CtC utilisC pour simuler le comportement variable des systemes B contretourant tels que les lits fluidis& 
(C. Lakshmanan et 0. E. Potter, Ind. Engng Chem. Res. 26,292-296 (1987)). On traite ici de I’application 
de ce modele a la simulation de la performance dynamique des echangeurs thermiques a plaques. On 
montre que le modtIe “cin&tnatique” n&es&e un t&s faible temps de calcul en donnant une simulation 
precise. I1 cakule aussi les prolih variables et stationnaires, offrant ainsi une approche ais& et precise pour 
les problimes de conception consideris par d’autres modiles. II montre que rep&enter un Cchangeur a 
plaques avec un certain nombre de canaux par un systzme a contre-courant equivalent, ne conduit pas P 

des erreurs significatives quant on consid& ks temperatures de sortie en regime permanent. 

DYNAMISCHE SIMULATION VON PLAI-TENWARMETAUSCHERN 

Zusammenfasauag-Modelle, die bisher in der Literatur beschrieben wurden, sind in der Lage, das 
station&e Verhalten von Plattenw&metauschem zu berechnen. Dabei werden die Diffetentialgkichungen, 
welche. die WiirmeIibertragung beschreiben. numerisch gel&t. Das neue, sogenannte “kinematische” 
Mode& das von den Autoren entwickelt wurde, ist in der Lage, das dynamische Verhalten von Gegen- 
stromsystemen, wie z. B. Wirbelbetten. zu simulieren (C. Lakshmanan and 0. E. Potter, tnd. Engng Chem. 
Res. 26.292-296 (1987)). In der vorhegenden Arbeit wind die Anwendung des kinematischen Modells bei 
der Simulation des dynamischen Verhaltens von Plattenwiirmetauschem gezeigt. Das kinematische Model1 
beniitigt auBerordentlich wenig Berechnungen. urn die Dynamik von Plattenwiirmetauschem exakt zu 
beschreiben. Die dynamischen und station&n Protile werden in einem Durchgang berechnet; dadurch 
steht fur Auslegungsprobleme tin einfaches und genaues Verfahren zur Vertiigung. Es zeigt sich such, daD 
bei einem Plattenwiirmeiibertrager mit einer geraden Zahl von Kaniilen keine spiirbaren FehIer bei der 

Berechnung der station&en Austrittstemperaturen entstehen. 

AHHAMH’4ECKOE MO~HPGBAHHE IUIACTEIH~ATb~ TEfI.JIOOEMEIiHHKOB 

-Pana npeanontmbre a mrmparype monenn npexuasua~enbr nma onpenenerrar cramfo- 
t=pstoro psaraa paSos= mmormma~remroog keemmxoa tsa ousoae ==morope==a4@e- 
parsurwewypu~~ apoueee rerr.aonepenoca. Hoaaa B mne.nr5a 
~o,~Somst=a 88ropakm JzutsIo# packYN MOAmJlb ‘Citneauzsm~, EcnoJ&ayeru luu arone.au- 
poaalaammaMmmu0rouoBaJtemmruanponaaroawcrr~xazimemtoo~cn0s. 
Pac==rpr=emanpaaaerocc MO_ -csnKMazrm- AJU M0JXxapoMmu IDI&oMRcQo pemsma 
mmormmam TeMoo6Meamaoa. n ocasaalq u-r0 MI TO¶sOro MOJXen8poaamU ,nnuamma lmacrmma- 
TbuTennoo6 Memntzoil c xcltoJlNoaasmeu naimofI MOAemt Tpe6m UlRpLlMwc commeerao pac- 
‘IcToa. MoneJIb ‘cEueMaTnz” uosaonacr TacKe 0JlnoBpeMemi0 plccarrmrrra JmIunamm il 
cratmouapxbse qxn@nn. hwc ~eronou ~ormo 6onee npocro H ~0-0 pemurb saxaor, uccne~oaaa- 
uxe m a6ropaMn. IIoKaaano, ‘CT0 np4emMeroK mmcnRmaTor0 TeIIJl~a c Pe7m4r.l 
K-M WOB -it llm8i atcruuoti ue upawmn L wa~~~u[bBbh( nor- 

pemEocrac 0npeJaeJmmm cramsouapnNx TeMnepaTyp Ha nxlxoxe. 


